Division of labor--sequential ATP hydrolysis drives assembly of a DNA polymerase sliding clamp around DNA.

نویسندگان

  • M M Hingorani
  • L B Bloom
  • M F Goodman
  • M O'Donnell
چکیده

The beta sliding clamp encircles DNA and enables processive replication of the Escherichia coli genome by DNA polymerase III holoenzyme. The clamp loader, gamma complex, assembles beta around DNA in an ATP-fueled reaction. Previous studies have shown that gamma complex opens the beta ring and also interacts with DNA on binding ATP. Here, a rapid kinetic analysis demonstrates that gamma complex hydrolyzes two ATP molecules sequentially when placing beta around DNA. The first ATP is hydrolyzed fast, at 25-30 s(-1), while the second ATP hydrolysis is limited to the steady-state rate of 2 s(-1). This step-wise reaction depends on both primed DNA and beta. DNA alone promotes rapid hydrolysis of two ATP molecules, while beta alone permits hydrolysis of only one ATP. These results suggest that beta inserts a slow step between the two ATP hydrolysis events in clamp assembly, during which the clamp loader may perform work on the clamp. Moreover, one ATP hydrolysis is sufficient for release of beta from the gamma complex. This implies that DNA-dependent hydrolysis of the other ATP is coupled to a separate function, perhaps involving work on DNA. A model is presented in which sequential ATP hydrolysis drives distinct events in the clamp-assembly pathway. We also discuss underlying principles of this step-wise mechanism that may apply to the workings of other ATP-fueled biological machines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Creating a dynamic picture of the sliding clamp during T4 DNA polymerase holoenzyme assembly by using fluorescence resonance energy transfer.

The coordinated assembly of the DNA polymerase (gp43), the sliding clamp (gp45), and the clamp loader (gp44/62) to form the bacteriophage T4 DNA polymerase holoenzyme is a multistep process. A partially opened toroid-shaped gp45 is loaded around DNA by gp44/62 in an ATP-dependent manner. Gp43 binds to this complex to generate the holoenzyme in which gp45 acts to topologically link gp43 to DNA, ...

متن کامل

The internal workings of a DNA polymerase clamp-loading machine.

Replicative DNA polymerases are multiprotein machines that are tethered to DNA during chain extension by sliding clamp proteins. The clamps are designed to encircle DNA completely, and they are manipulated rapidly onto DNA by the ATP-dependent activity of a clamp loader. We outline the detailed mechanism of gamma complex, a five-protein clamp loader that is part of the Escherichia coli replicas...

متن کامل

The kinetic mechanism of formation of the bacteriophage T4 DNA polymerase sliding clamp.

DNA replication in bacteriophage T4 requires the assembly of a structure called the "sliding clamp" near the 3' end of the DNA strand that is to be extended. This structure is a trimer ring of the T4 gene 45 product (gp45) and serves to regulate the processivity of the DNA polymerase within the T4 DNA replication system. The placement of this ring is performed by an ATPase complex of the produc...

متن کامل

The β sliding clamp closes around DNA prior to release by the Escherichia coli clamp loader γ complex.

Escherichia coli γ complex clamp loader functions to load the β sliding clamp onto sites of DNA replication and repair. The clamp loader uses the energy of ATP binding and hydrolysis to drive conformational changes allowing for β binding and opening, DNA binding, and then release of the β·DNA complex. Although much work has been done studying the sliding clamp and clamp loader mechanism, kineti...

متن کامل

Pre-steady state analysis of the assembly of wild type and mutant circular clamps of Escherichia coli DNA polymerase III onto DNA.

The beta protein, a dimeric ring-shaped clamp essential for processive DNA replication by Escherichia coli DNA polymerase III holoenzyme, is assembled onto DNA by the gamma complex. This study examines the clamp loading pathway in real time, using pre-steady state fluorescent depolarization measurements to investigate the loading reaction and ATP requirements for the assembly of beta onto DNA. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 18 18  شماره 

صفحات  -

تاریخ انتشار 1999